Reflective Pavements and the Urban Heat Island Effect

M. Pomerantz, H. Akbari, R. Levinson, B. Pon

Lawrence Berkeley National Laboratory Berkeley, CA

Presented at

Cool Pavements: Developing Research and Implementation Strategies Workshop

June 27, 2005

EPA, Washington, DC

Contact: Melvin Pomerantz, (510) 486-4801 <m_pomerantz@LBL.gov>

Energy and Air Quality Analysis

Aerial View of Washington, D. C. Pavement Area is Substantial

Land Cover in Sacramento, Ca Pavement Area > 40%

Reflective Pavements are Cooler

Fresh asphalt

Albedo: 0.05

Temperature: 123°F

Aged asphalt

Albedo: 0.15

Temperature: 115°F

Prototype •

asphalt coating

Albedo: 0.51

Temperature: 88°F

An Approximate Formula for the Change in the Daily (High - Low) Temperature

$$\Delta(T_{H} - T_{L}) / (T_{H} - T_{L}) \approx ([\alpha_{l} - \alpha_{h}] / \alpha_{av}) (A_{p} / A_{total})$$

 $(T_H - T_L)$ = daily (high temperature – low temperature), say 25° F; α_h = original higher pavement *absorptance*, say 0.9; α_l = lower *absorptance* of the changed pavement, say 0.7; α_{av} = average *absorptance* of the whole city, say 0.8; A_p = area of the pavements

 A_{total} = total area of the city, say $A_p / A_{total} = 0.3$.

Change in temperature rise is \approx - 2 °F (-1 °C).

Albedos of Asphalt Concrete Pavements vs. Age

Placing Chip Seals

Source: Asphalt Handbook

Chip Seal and Asphalt Pavement in San Jose, CA

Albedos of Chip Seals and Asphalt Concrete vs. Age

Number of Cement Concrete Pavements vs. Albedo

Lab Study of Concrete Albedo

- 32 varieties of concrete
- Simulated weathering, rain, soiling, abrasion
- Cement albedo has disproportionally strong influence on concrete albedo
- Weather, soiling, abrasion each usually reduced albedo
- Albedo increased as concrete cured (first 6 weeks)

Albedos of Various Pavements We Measured

Potential \$ Savings in Los Angeles, CA For Both Direct and Indirect Effects

\$ Savings for Los Angeles

- Energy, Direct, \$100M/year
- Energy, Indirect, \$70M/year pavement about \$15M/yr.
- —Smog, \$360M/year pavement about \$76M/yr.

Each city is different, but estimate of national savings: \$5B/year pavement about \$0.5B/yr

Collateral Effects of Cooler Pavements

Pavement durability

For asphalt concrete in hot climates, cooler pavement temperatures → longer pavement life

Illumination

Roads that reflect visible light illuminate people, objects, signs

Glare

Not a problem for recommended reflectivities

Temperature Effect on Rutting

Source: Dr. John Harvey, UC B Civil Engineering, Inst. Transportation Studies

Contribution of Pavement Reflectivity to Illumination

Conclusions about Reflective Pavements

- There are conventional pavements that cover the range of albedos 0.04 to 0.35.
 - thin: chip seals, asphacolor, [asphalt]; white PCC topping
 - thick: PCC
- The albedos vary over the pavements' lifetimes, but net benefit is possible.
- Benefits include air quality, energy, durability of asphalt concrete, illumination.
- There are experimental reflective pavements:
 - Uncoated chipping with white aggregate [on asphalt]
 - Cool dark dyes [in asphalt]